
Permission to distribute given by EG3 

http://www.eg3.com/report-fpga/
http://www.eg3.com/
http://www.eg3.com/
cjclark
Text Box
FPGA SECURITY
FPGA CONFIGURATION
FPGA PCB Design
FPGA Bitstream Authentication



F
P

G
A

 I
N

S
ID

E
R

S’ G
U

ID
E: V

E
N

D
O

R
 I

N
T
E

R
V

IE
W

S
  

 

© Copyright 2008 – eg3.com – No Reproduction or Further Dissemination Allowed 

INTELLITECH: FPGAS AND SECURITY  

25 October 2008: FPGAs and Security 

 INTERVIEWEE. CJ CLARK 
  CEO, INTELLITECH CORP. 

 TEL.  603-868-7116 
 EMAIL.  scansalesatintellitechperiodcom 
 COMPANY.  INTELLITECH CORPORATION 

 WEB.  http://www.intellitech.com/
 Q.  First of all, tell us a little bit about yourself and your responsibilities at Intellitech. 

 A.  I think most people in the industry know me from my work as chair of IEEE 1149.1/JTAG.  My 
first job was back in 1978 for Plantronics/Wilcom, so I have seen a lot and I fortunately got 
involved in electronics at a very young age.  I sit on two industrial advisory boards for the 
University of New Hampshire, I guest lecture on the IEEE series “Mission-Critical FPGA-based 
Embedded Systems” and I hold a few patents related to test and FPGA configuration.  As CEO 
my responsibilities are mostly for setting the strategic direction for the company and anticipating 
our customer’s needs rather than just reacting to them.  I work with a great group of people at 
Intellitech, many for ten plus years now that do the rest of the work, executing on that strategic 
direction.  

 

 Q.  Everyone is familiar with Xilinx and Altera but not so much the vendors in the 
“FPGA ecosystem” more generally.  Can you tell us briefly about your product 
offerings, especially as they relate to FPGA-based designs? 

 A.  Yes, thank you for asking.  SystemBIST is our IC that provides key ecosystem functions for FPGA 
based PCBs.  Those functions are FPGA parallel and serial configuration, FPGA Trojan 
protection, FPGA bitstream security, watch dog timers, periodic event control, power-on reset, 
embedded JTAG test and an in-the-field update engine.  SystemBIST provides the FPGA 
configuration over both the high-speed parallel configuration bus as well as over JTAG.  What’s 
different than say using a commodity FLASH or PROM is that the sequence is programmable 
using our software GUI.  You can specify how to program the FPGAs, for instance loading a 
different bitstream based on what size FPGA is present or based on what daughter boards is 
present.  What we call ‘conditional based configuration’.  PCBs with FPGAs have power on reset 
ICs and watch dog timer ICs.  What’s different is that our built in POR and watch dogs are 
programmable in their behavior.  At power-up a reset IC will just toggle reset, however with 
SystemBIST you can direct what you want to happen, perhaps hold the CPU reset low until after 
all FPGAs are configured and then release the reset.  Similar things can be done with the watch 
dog, since it’s integrated with our on-chip FPGA configuration engine and JTAG engine.  Power-
up sequences with the DC/DC converters can be controlled by SystemBIST and integrated with 
the FPGA configuration strategy rather than implementing with the mission mode CPU or home-
brew CPLD design.  We control the DC/DC converters via GPIO or program the voltage levels via 
the I2C interface.  Since we have built-in JTAG based test, we can do things like voltage 
margining while running structural or at-speed based tests, all of course without handshaking 
with the mission mode CPU and firmware.     SystemBIST is a smart board manager, it takes care 
of a lot of the housekeeping functions needed in FPGA based PCBs.  It really can be a big mistake 
to integrate the infrastructure needed for FPGA programming, embedded test or in-the-field 
updates with the mission mode software.  It adds to the complexity and needs to be developed 
entirely by engineers familiar with the software, CPU and firmware.  SystemBIST keeps the non-
mission functions, the ‘auxiliary’ functions; separate, which makes development, bring-up and 

Permission to distribute given by EG3 

FPGA bitstream security FPGA configuration

http://www.intellitech.com/


F
P

G
A

 I
N

S
ID

E
R

S’ G
U

ID
E: V

E
N

D
O

R
 I

N
T
E

R
V

IE
W

S
  

 

© Copyright 2008 – eg3.com – No Reproduction or Further Dissemination Allowed 

maintenance easier.  There is less debug as the ecosystem strategy can be executed from our high 
level software tools and validated prior to embedding.  With ad-hoc approaches, the tools aren’t 
available, therefore debug and development is done manually by the firmware engineer.  
SystemBIST designs don’t have to wait for the OS to boot for instance to do something as simple 
as run an embedded test or configure an FPGA.  SystemBIST is easier for the FPGA engineer, 
who may not be experienced at writing embedded software, to use our GUI to develop the 
configuration strategy and the remote updating capabilities.  Embedded test is easier as test 
engineers can import their manufacturing JTAG tests into SystemBIST without having 
embedded software engineering expertise or trouble the embedded firmware developer to do it. 

   

 Q.  Are your products competitive or complementary to those of the big FPGA 
vendors?  In what ways? 

 A.  They are complementary really.  Any of my contacts within the FPGA vendors see selling the 
FPGAs themselves as their priorities, FPGA configuration is just a necessary thing that the FPGA 
companies provide application notes for.  A key capability of SystemBIST is the embedded self-
test, which is an area that FPGA companies just don’t want to go into. 

   

 Q.  Security is a growing concern worldwide, and yet “security” can mean so many 
things.  In the FPGA world, security is often explained as security against “reverse” 
product engineering.  What other meanings of security do you see as relevant to 
FPGA-based designs? 

 A.  That’s a great question, I’m glad you asked.  The emphasis on security has been against bitstream 
reverse engineering and copying by non-connected third parties.  The current security, using 
AES encryption and a key programmed into the FPGA doesn’t help too much against product 
overbuilding or cloning by connected parties.  The keys are generated in the FPGA tools as plain 
text files which are typically sent to the contract manufacturer so they can be programmed in.  
Product overbuilding and cloning is typically done by knowledgeable insiders, ex-employees or 
unscrupulous contract manufacturer who builds more products to sell on the spares or other 
markets.  That took place in the Cisco cloning case investigated by the FBI.  PCBs need better 
protection, a PUF, a Physically Un-clone-able Feature.  SystemBIST provides this with its unique 
on-chip customer ID and serial number. 

  Two other important areas are in security against hacking and security against Trojan bitstreams 
being loaded.  If a key is present, depending on which FPGA you’re using, the FPGA bitstreams 
that are not encrypted can be loaded into the FPGA.  Battery backed security keys are easy to 
defeat by simply removing the battery or shorting the battery leads until the battery is dead.  An 
attacker may not be looking to steal your FPGA design but to replace it with a trojan design.  If 
you are making an ATM machine, voting machine, secure communications or gambling 
machine, think of how the operation would be compromised if an attacker could load in their 
own FPGA bitstream that mimics the operation but perhaps games the system in their favor or 
collects passwords.    Any publicly available bitstream storage device or commodity flash is easy 
for a hacker to re-program using the same tools you used to program them with.  Hackers might 
not be trying to load Trojans but get your hardware platform to do something else, maybe enable 
a feature that shouldn’t be enabled. 

   

 

 Q.  Can you explain specifically what ways your product brings new levels of security?  
At a technical level, can you explain how it interacts with the on-board FPGA and 
thereby “secures” it? 

Permission to distribute given by EG3 

FPGA bitstream security FPGA configuration



F
P

G
A

 I
N

S
ID

E
R

S’ G
U

ID
E: V

E
N

D
O

R
 I

N
T
E

R
V

IE
W

S
  

 

© Copyright 2008 – eg3.com – No Reproduction or Further Dissemination Allowed 

 A.  Sure.  The new security levels are in multiple areas.  Our software generates a SystemBIST 
‘image’ which is a binary representation of all of the things you would like your ecosystem to do, 
FPGA configuration, DC/DC converter control, embedded test etc.  The image data is 
compressed and encrypted, it’s not just straight bitstreams that can easily be discovered and 
replaced by a hacker.  Further, they are tied to your customer code; even another customer who 
is using our tools will not be able to create an image that matches yours.  SystemBIST has active 
security through tokens and secure hash.  We provide a small amount of IP that you design into 
your FPGA with your 128-bit security key.  SystemBIST sends challenge/response tokens to the 
FPGA over JTAG or over I2C to the FPGAs (one at a time) and expects a calculated hash 
response, which it compares internally to SystemBIST.  If an FPGA fails to authenticate, then 
SystemBIST will execute a user defined operation, which could be something as simple as re-
programming the FPGA or it could hold the entire PCB in reset until it is powered down. 
Similarly, the FPGA design is looking for this challenge/response pair and it can disable its 
internal logic if the data is not correct or never appears.   This security becomes a bit more 
universal; it can be used with AES capable FPGAs or FPGAs without AES.  Copying the bitstream 
will not help an attacker, as the operation won’t work in another system.   Loading a trojan 
bitstream with JTAG wont work either as SystemBIST is constantly checking for the FPGA 
authenticity.  There is no non-volatile storage that the unauthorized bitstreams can be stored in.  
Cloners can’t buy SystemBIST devices with your customer code and security key or the software 
to generate new images, so it becomes impossible to make more copies of your product than you 
authorize.    

  Our update mechanism is also secure.  It is far superior compared to sending bitstreams over the 
internet or open text files like STAPL.  STAPL is tough to use these days anyway, it’s JTAG only, 
doesn’t support parallel FPGA configuration needed for speed and is an open text file that is very 
easy to hack.  SystemBIST checks for authenticity of the FPGA update, the update is correctly 
targeted for this system, it’s the right version and it has the proper secure hash algorithm values 
in it.  Bits that get modified on the way to the product by an attacker will cause the hash to be 
incorrect and prevent SystemBIST from performing the update. 

 

 Q.  What’s the connection between JTAG test and FPGA configuration? And why is 
embedded test important, how does it differ from software based self-test? 

 A.  That’s a great question as well.  Software based functional test is typically developed by someone 
who is expert with the system architecture and has the ability to write embedded firmware.  
IEEE 1149.1/JTAG in contrast was developed so testing could be performed without being 
experts in the mission mode logic.  Home-brew functional test is not well understood by third 
parties like contract manufacturers, they can’t change the test or diagnose failing boards very 
well, and it’s not cost effective for them to become experts in the functionality of one customer’s 
product.  JTAG/1149.1 testing however is very well known by the CM.  JTAG tests most likely are 
already available for production, with SystemBIST it becomes quite easy to import and re-use 
them for embedded test in the field.  There is much more automation in test generation with 
1149.1 compared to software functional test which is typically a manual effort.  1149.1 tests tend 
to be much better at pinpointing a fault than a functional test. 

  FPGA’s typically have to be configured in order to maximize test coverage.  Consider an FPGA 
with LVDS I/O connected to an LVDS device.  An unprogrammed FPGA’s I/O is LVTTL, so the 
100-ohm termination resistor will look like a dead short to any JTAG pin toggling.  The FPGA 
would have to be configured to run an interconnect test across the I/O to the other device.  In 
today’s systems, we program the FPGA’s multiple times, we download test helper circuits (which 
we call TEST-IP) into the FPGAs to facilitate at-speed testing.  We download BER engines to the 
FPGAs to test the SERDES connections at speed.  We download memory BIST engines to the 
FPGAs to test the DDR2/DDR3 connections at speed.  With SystemBIST, the user can embed 
these tests and use the built-in periodic suite to get asynchronous voltage margining for instance 
during the DDR or BER tests.  You could try to do this all with firmware and the mission mode 
CPU, but it’s a bit more messy.  Functional test usually is an end-to-end test, where for instance 

Permission to distribute given by EG3 

FPGA bitstream security FPGA configuration



F
P

G
A

 I
N

S
ID

E
R

S’ G
U

ID
E: V

E
N

D
O

R
 I

N
T
E

R
V

IE
W

S
  

 

© Copyright 2008 – eg3.com – No Reproduction or Further Dissemination Allowed 

tests of multiple SERDES connections are tested together, with a dependency on an error-free 
DDR memory interface to store the packets.  The PLL and DC-to-DC converter have to be 
functioning as well.   With JTAG based BER tests checking for proper DC levels and checking 
that the PLL jitter is not out of spec is part of the start-up test before the channel is even at-
speed.  With whole board functional test, if one item is wrong it’s hard to tell what went wrong 
since so much of the system is functioning and interacting.  With directed tests like BER, we 
concentrate on testing one element.  JTAG based at-speed testing or what we call ‘emulation 
based testing’ is more directed, its essentially datasheet testing with little emphasis on the top 
level functionality of the systems.    

  In our online presentations we show this layered approach to embedded test, a pyramid 
representing the entire test development.  The manufacturing tests which already exist can be 
imported, this provides us with a base-line structural test for the PCB, checking all the 
interconnects, checking connections to mezzanine cards and DDR memories.  The next level is 
the at-speed testing, this is where the FPGAs are programmed with special designs which can be 
executed via JTAG, then the mission mode functional test can be added at the top.  With 
SystemBIST you have a lot more known variables and a lot less work to do.  CPU based 
functional test can have grey areas where it’s not known if a failure in the field is due to the 
software or to the hardware.  SystemBIST test gives you that extra data point; it tells you if the 
hardware is failing with no ambiguity.     SystemBIST stores all of the failures in non-volatile 
memory, for retrieval by the mission mode CPU or manually with a JTAG tool to extract the 
failures.  There is never the possibility of a NFF, no fault found as the failures are always stored 
and can be used with our software to determine a net/pin or register level fault. 

  There is a new effort within the IEEE called P1687 or IJTAG.  This standard uses 1149.1 to access 
on-chip instruments like our FPGA BER and DDR BIST, however these instruments will be on 
Asics and commodity parts.  In my opinion, the momentum is building towards more structured 
test via 1149.1 and away from software based functional test.  It is much like the history of 
integrated circuit test.  IC test was done with functional testers years ago, but as the logic 
complexity increased it became too expensive to develop manual functional tests.  Structured 
tests via scan were done since ATPG – automatic test pattern generation could be done for stuck 
at faults.  Then tools became more robust and could generate transition faults and path delay 
faults via scan; now we have logic BIST and on-chip memory BIST, all which run at speed.  But 
very little of the test is based on the functional design of the IC. 

 

 Q.  How much does SystemBIST cost?  Would you explain your business model and 
any different options in terms of engagement? 

 A.  SystemBIST is roughly $10-15 depending on your volume.  That cost of course is completely 
recouped in removing other FPGA configuration methods, reducing the FLASH memory size, 
removing CPLD power sequencers, power on reset chips, watch dog timers and other parts.  Our 
business model is that we sell the silicon, we license the software tools that go with it, and we 
provide services that guarantee our customers success.  Once your design team is using a 
structured method for FPGA configuration and embedded test, where the infrastructure is not 
mixed in with the mission mode functionality, then engineering functions that typically are done 
in-house can be outsourced to third parties, such as Intellitech, who can work simultaneously on 
the ecosystem without being in the critical path of the mission mode firmware development.    

   

 Q.  How would you recommend a potential customer find out about SystemBIST?  Do 
you offer online webinars?  Training seminars?  Demos?  How can one “try” before 
“buying?” 

 A.  Much of this is on our website.  You can see a webinar, take a look at the reference designs and 
read our white papers on SystemBIST on the website.  We have a new live webinar coming in 

Permission to distribute given by EG3 

FPGA bitstream security FPGA configuration



F
P

G
A

 I
N

S
ID

E
R

S’ G
U

ID
E: V

E
N

D
O

R
 I

N
T
E

R
V

IE
W

S
  

 

© Copyright 2008 – eg3.com – No Reproduction or Further Dissemination Allowed 

December.  There is an evaluation PCB as well.  Our application engineers will help the designer 
get SystemBIST designed into their PCB. 

 

 Q.  Thank you for this interview. 

 

 
 

Permission to distribute given by EG3 

FPGA bitstream security FPGA configuration

http://www.aldec.com/Events/default.aspx

	eg3.com
	fpga tutorial: insiders guide to fpgas




